Virtual KITTI is a photo-realistic synthetic video dataset designed to learn and evaluate computer vision models for several video understanding tasks: object detection and multi-object tracking, scene-level and instance-level semantic segmentation, optical flow, and depth estimation.
Released in: Virtual KITTI
Source: arXiv - Virtual Worlds as Proxy for Multi-Object Tracking Analysis
Virtual KITTI is a photo-realistic synthetic video dataset designed to learn and evaluate computer vision models for several video understanding tasks: object detection and multi-object tracking, scene-level and instance-level semantic segmentation, optical flow, and depth estimation.
21260
Images in dataset
2016
Year Released
Key Links & Stats
VisualComputingInstitute / vkitti3D-dataset
@inproceedings{Gaidon:Virtual:CVPR2016,
author = {Gaidon, A and Wang, Q and Cabon, Y and Vig, E},
title = {Virtual Worlds as Proxy for Multi-Object Tracking Analysis},
booktitle = {CVPR},
year = {2016}
}